Mobile Robot Indoor Localization Using Artificial Neural Networks and Wireless Networks

نویسندگان

  • Gustavo Pessin
  • Fernando S. Osório
  • Jó Ueyama
  • Denis F. Wolf
  • Torsten Braun
چکیده

Accurate position information of an agent (i.e. robot, animal, or people) is a requirement to accomplish several tasks. Some sensors like GPS provide global position estimation but it is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras can be used for position estimation, but they require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of view, which makes the localization task harder. In the case of video cameras, the variation of light is also a serious issue. Nowadays Wireless Networks (WN) are widely available in indoor environments and allow efficient global localization demanding relatively low computing resources. Other advantages of this approach are scalability, robustness, and independence of specific features of the environment. However, the inherent instability in the wireless signal does not allow its direct use for very accurate position estimation. In this paper we evaluate the use of an Artificial Neural Network (ANN) to improve the estimation of the position of a mobile node in indoor environment using data provided by wireless networks. Our approach uses the ANN capabilities of learning and generalization to reduce the effect of the unstable data, increasing the accuracy of the agent’s position. In order to validate our approach several ANN topologies have been evaluated in experimental tests performed with a mobile node in an indoor space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

A Rssi Based Localization Algorithm for WSN Using a Mobile Anchor Node

Wireless sensor networks attracting a great deal of research interest. Accurate localization of sensor nodes is a strong requirement in a wide area of applications. In recent years, several techniques have been proposed for localization in wireless sensor networks. In this paper we present a localization scheme with using only one mobile anchor station and received signal strength indicator tec...

متن کامل

I see you: On Neural Networks for Indoor Geolocation

We propose a new passive system for indoor localization of mobile nodes. After the setup, our system only relies on arbitrary wireless communication from the nodes, whereby neither the mobile nodes nor the communication needs to be under our control. The presented system is composed of three Artificial Neural Networks (ANN) using a radiomap approach and the Received Signal Strength (RSS) for lo...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011